Google

Universal Video Quality (UVQ) in YouTube open source and production deployment insights

Yilin Wang (yilin@google.com)

Staff Software Engineer

YouTube Media Algorithms Team

YouTube's Requirements for Video Quality Assessment

Handling UGC contents

to reflect various quality expectation and sensitivity

Supporting no-reference

- to support no-ref applications, e.g. monitoring uploads and live streaming
- also work well in reference-based use cases, and be reliable to non-pristine reference

Interpreting quality score

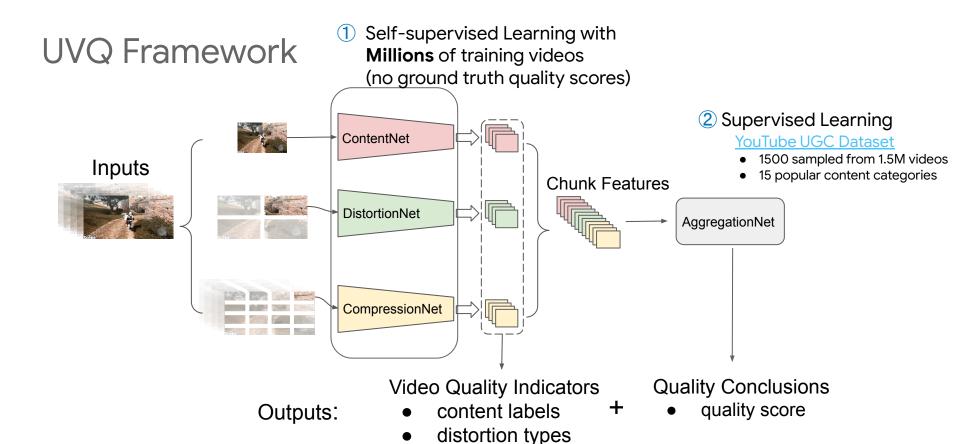
to help people better understand and solve quality issues

high quality expectation v.s. low sensitivity on quality

original (non-pristine) v.s. transcoded version

compression artifacts v.s. codec/transmission error

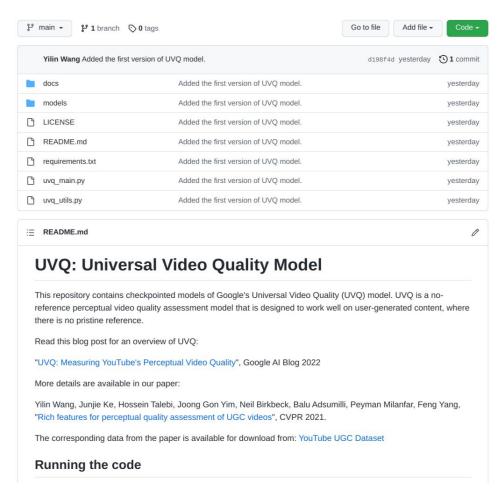
UVQ: a **No-Ref** based **Interpretable** quality model for **UGC**


UVQ Quality Report:

Overall quality score in [1, 5]

- Interpretation of UVQ scores
 - o [1, 3.5): relatively low
 - [3.5, 4.2]: medium/fair
 - [4.2, 5]: relatively high
- Noticeable diff: 0.05~0.1 UVQ DMOS
- Score for this example: 3.15 (low quality)

Quality labels


- From high level (semantic) to low level (pixel difference)
- Labels for this example
 - Strategy video game,
 - Gaussian blur, Pixelate
 - Medium high compression

compression level

UVQ has been open sourced!

- Public link: <u>github.com/google/uvq</u>
- In the folder
 - UVQ models + runnable scripts
- Input
 - "video_id,length,filepath"
- Outputs
 - overall scores + labels + raw features

UVQ Applications in YouTube

Monitor Optimizer Feature Detector Useful signals for Making decision **Production quality** Specific quality quality-related or optimization issues based on quality services VOD, Shorts Release Validation Search & Transcoding Recommendation Optimization Live, TV Ingestion Launch Evaluation **Codec Evaluation** Video Enhancement

Model efficiency becomes critical for large scale applications.

Revisiting the Efficiency of UGC Video Quality Assessment

Yilin Wang, Joong Gon Yim, Neil Birkbeck, Junjie Ke, Hossein Talebi, Xi Chen, Feng Yang, Balu Adsumilli

ICIP 2022

Current UGC-VQA Research

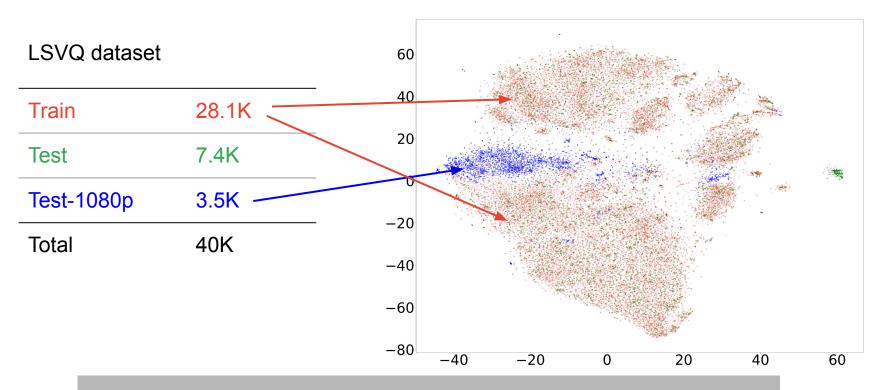
Small Training Set		Huge Model			
<u>Dataset</u>	<u>Videos</u>	<u>Name</u>	<u>Backbone</u>	<u>Params</u>	
LIVE-VQC	585	VSFA	ResNet-50	> 23M	
KonVid-1k	1,000	PVQ	2D and 3D ResNet-18	> 44M	
YouTube-UGC	1,500	UVQ (CoINVQ)	D3D and EfficientNet	43.1M	
LSVQ	40,000	Fast-VQA	Swin-Transformer	27.5M	
					

Do we really need such high complexity models, given the limited scale of UGC data?

Possibility to Reduce Model Complexity

- UVQ-lite: replacing UVQ's backbones with smaller ones
 - D3D -> MoViNet
 - EfficientNet -> MobileNet
- Significant complexity reduction
 - Model parameters is reduced by 83.1%
 - Flops is reduced by 92.1%

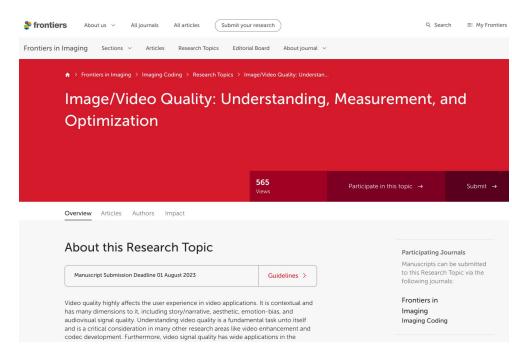
	UVQ			UVQ-lite				
	Compres- sionNet	Content Net	Distor- tionNet	Total	Compres- sionNet	Content Net	Distor- tionNet	Total
Backbone	D3D	Efficient Net-b0	Efficient Net-b0		MoViNet- A0	Mobile Net-0.35	Mobile Net-0.2	
Parameters(M)	16.382	12.177	14.566	43.126	1.160	3.611	2.531	7.304 (83% drop)
Flops(G)	12.792	4.229	4.259	21.281	0.967	0.360	0.367	1.696 (92% drop)


How does the small model UVQ-lite perform?

Model Performance

- UVQ-lite outperforms larger models (VSFA and TLVQM) on LSVQ test set
- UVQ-lite also achieves highest correlations on LSVQ Test 1080p set

Model	LSVQ Test		LSVQ Te	Model	
	PLCC	SRCC	PLCC	SRCC	Params
TLVQM	0.774	0.772	0.616	0.589	-
VSFA	0.796	0.801	0.704	0.675	> 23M
PVQ (w/o v-patch)	0.816	0.814	0.708	0.686	> 44M
UVQ	0.809	0.815	0.717	0.685	43.1M
UVQ-lite	0.798	0.806	0.718	0.690	7.3M


t-SNE Visualized UVQ Features (Distortion Features for LSVQ)

The coverage of existing dataset still needs improvement.

Summary

- UVQ is open source now!
 - o <u>aithub.com/google/uva</u>
- Efficiency of UGC-VQA is important and insufficiently addressed
 - existing datasets may not fully represent the complexity of UGC video quality
 - we can design more efficient models with better generalizability for UGC-VQA tasks
- <u>Frontiers' research topic</u> on image/video quality
 - o deadline: Aug 1st, 2023

Thanks!